Deriving Matrix Concentration Inequalities from Kernel Couplings

نویسندگان

  • Daniel Paulin
  • Lester Mackey
  • Joel A. Tropp
چکیده

This paper derives exponential tail bounds and polynomial moment inequalities for the spectral norm deviation of a random matrix from its mean value. The argument depends on a matrix extension of Stein's method of exchangeable pairs for concentration of measure, as introduced by Chatterjee. Recent work of Mackey et al. uses these techniques to analyze random matrices with additive structure, while the enhancements in this paper cover a wider class of matrix-valued random elements. In particular, these ideas lead to a bounded differences inequality that applies to random matrices constructed from weakly dependent random variables. The proofs require novel trace inequalities that may be of independent interest. This paper is based on two independent manuscripts from late 2012 that both used kernel couplings to establish matrix concentration inequalities. One manuscript is by Paulin; the other is by Mackey and Tropp. The authors have combined this research into a unified presentation, with equal contributions from both groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing kernel Hilbert spaces of Gaussian priors

We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described through a concentration function that is expressed in the reproducing Hilbert space. Absolute co...

متن کامل

A Likelihood Ratio Approach for Probabilistic Inequalities

We propose a new approach for deriving probabilistic inequalities based on bounding likelihood ratios. We demonstrate that this approach is more general and powerful than the classical method frequently used for deriving concentration inequalities such as Chernoff bounds. We discover that the proposed approach is inherently related to statistical concepts such as monotone likelihood ratio, maxi...

متن کامل

Deriving Fuzzy Inequalities Using Discrete Approximation of Fuzzy Numbers

Most of the researches in the domain of fuzzy number comparisons serve the fuzzy number ordering purpose. For making a comparison between two fuzzy numbers, beyond the determination of their order, it is needed to derive the magnitude of their order. In line with this idea, the concept of inequality is no longer crisp however it becomes fuzzy in the sense of representing partial belonging or de...

متن کامل

A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise joint kernel measures covariance along inputs and across different latent signals in a mutually-dependent fashion. A latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit clas...

متن کامل

un 2 00 5 Moment Inequalities for U - statistics Rados law Adamczak

We present moment inequalities for completely degenerate Banach space valued (generalized) U-statistics of arbitrary order. The estimates involve suprema of empirical processes, which in the real valued case can be replaced by simpler norms of the kernel matrix (i.e. norms of some multilinear operators associated with the kernel matrix). As a corollary we derive tail inequalities for U-statisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013